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Abstract: One important tool is the optimal clustering of data into useful categories. Dividing similar objects into 

a smaller number of clusters is of importance in many applications. These include search engines, monitoring of 

academic performance, biology and wireless networks. We first discuss a number of clustering methods. We 

present a parallel algorithm for the efficient clustering of objects into groups based on their similarity to each 

other. The input consists of an n by n distance matrix. This matrix would have a distance ranking for each pair of 

objects. The smaller the number, the more similar the two objects are to each other. We utilize parallel 

processors to calculate a hierarchal cluster of these n items based on this matrix. Another advantage of our 

method is distribution of the large n by n matrix. We have implemented our algorithm and have found it to be 

scalable both in terms of processing speed and storage. 

 

1 Introduction 

Dividing similar objects into a smaller number of clusters is of importance in many 

applications. These include search engines, monitoring of academic performance, biology and 

wireless networks. We first discuss a number of clustering methods. These include the K-

means clustering algorithm and a number of hierarchal clustering methods. Hierarchal 

clustering methods have advantages over K-means. Unfortunately, Hierarchal Clustering can 

be expensive. It is for this reason that hierarchal clustering has been avoided in some 

applications. One example of such an application is the clustering of candidate protein 

structures into a limited number of groups (Zheng, Gallicchio, Deng, Andrec, & Levy, 2011). 

If and when clustering is used it is generally K-means clustering.  Hierarchal Clustering, 

itself, is also divided into sub-methods such as simple hierarchal clustering (SHC) and 

complete hierarchal clustering (CHC). There are a few other methods of hierarchal clustering. 

While SHC has faster algorithms, CHC, which is more useful, is O(n
3
). This can be 

prohibitive for large n.   

 

We present a parallel algorithm for the efficient clustering of proteins into groups. The input 

consists of an n by n distance matrix. 

2 Choice of clustering method 

2.1 Clustering Methods 

Clustering is the generic term for methods of categorizing objects into groups or clusters. 

There are hierarchal and non-hierarchal methods. There are methods that build clusters top-
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down – that is they begin with all item in one large cluster and break down that cluster over a 

number of iterations. There are also bottom-up or agglomerative algorithms.  

Non-hierarchal or partition methods include K-means, Graph Theoretic and other methods. 

The non-hierarchal clustering methods in general pre-sets the number of clusters and then fit 

the n items into those clusters. The name K-means indicates that there is a pre-set number of 

K clusters. It is an efficient algorithm but does not have the advantages of hierarchal 

clustering.   

Hierarchal clustering methods, on the other hand, first assign every item to its own cluster. 

For n items, we start, therefore, with n clusters. The algorithm then iterates and combines two 

of the clusters into one larger cluster. It iterates n times until there is one large cluster. A 

snapshot is taken after every iteration of what clusters there were at the end of each iteration. 

This is preserved in an upside down tree (Dendrogram). If our goal, for example, was to 

divide the data into 10 clusters, we simply look 10 levels down the tree – on that level will be 

10 clusters.  

Thus, there are numerous advantages of hierarchal clustering. One advantage is that there is 

no pre-set number of clusters. Another advantage of hierarchal clustering is that it’s output is 

a full tree (also known as a Dendrogram) of clusters. The bottom ‘row’ of the tree is each of 

the n items in its own cluster. The second to the bottom row shows n-1 clusters and the top of 

the tree shows one large cluster. Once finished we can choose any of the output levels of the 

tree depending on how finely clustered we want it. 

 

Hierarchal Agglomerative Clustering methods include: 

1. single-linkage  

2. complete linkage 

3. Average link 

4. Centroids 

5. Ward’s method 

 

We found that Hierarchal bottom-up agglomerative clustering to be useful in many situations 

but having a cost of O(n
3
). This makes it too expensive to use in many real world 

applications.  

One exception is Single-Linkage hierarchal clustering which can be solved by an algorithm 

that mimics the Prim’s Minimum Spanning Tree Algorithm.  

 

To get a feel for the various hierarchal clustering methods, let’s illustrate single-linkage and 

complete linkage. Complete-linkage clustering tends to produce ‘round’ clusters whereas 

single-linkage clustering tends to produce ‘long’ clusters. The shapes of the other clustering 

methods are in between.  

As an example let’s look at the three clusters depicted in figure 1 Lavrenko (2014) Hierarchal 

Clustering algorithms, in the next iteration, would combine two of these clusters and arrive at 
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a total of two resulting clusters. The difference between the specific hierarchal clustering 

algorithms is the rule used to decide which of the two clusters to combine. 

 

Figure 1: Example of 3 clusters  

 

In single linkage we measure the distance between clusters as the distance between their 

closest members. Single-linkage would combine the red and yellow clusters because the right-

most red and left-most yellow are closer than the blue item is to any red or yellow. As you can 

see we will have an elongated red/yellow cluster where the far yellow and reds may be very 

different from each other.  

 

In complete linkage we measure the distance between clusters as the distance between their 

furthest members. Complete linkage would not combine the red and yellow because we will 

use the distance of the furthest red and furthest yellow which is a larger distance than blue to 

either yellow or red. It looks like the blue is closer to the furthest yellow (on the right) then to 

the furthest red (on the bottom-left). Therefore blue would be combines with yellow. In 

complete linkage, the clusters tend to be circular and closer to each other. 

 

The other schemes produce clusters that are in between; not as elongated as produced by 

simple-linkage and not as circular as produced by complete-linkage. 

 

Although there exist specialized algorithms for single-linkage (Hendrix et al., 2013), complete 

linkage tends to give better clusters (not elongated) and is more useful.  

 

For these reasons we employ agglomerative hierarchal complete linkage clustering. This 

method gives more useful clusters than single-linkage and does not pre-designate a specific 

number of clusters as in non-hierarchal clustering methods. We use the Lance-Williams 

update algorithm (Lance & Williams, 1967) and We note that the Lance–Williams algorithm 

is general and can be used with any of the hierarchal methods listed above; for single-linkage 

we would suggest more efficient algorithms such as Hendrix (2013).  

In the next section we give a brief review of the literature with resources for more study. 

 

 

3 Review of the Literature: Clustering Algorithms  
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3.1 Non-hierarchal methods 

There are numerous non-hierarchal clustering methods that begin with a set number of 

categories and then try to best place items into those categories. K-means, mentioned earlier, 

is one of the earliest clustering algorithms (Steinhaus, 1956). In addition regression has been 

used (Gawrysiak, Okoniewski, & Rybinski, 2001). More recently, decision trees methods, 

which can be useful for categorization into given categories via numerous decision criteria 

(Liu, Xia, & Yu, 2005) have been used. Kaewchinporn  (2011), combined the decision tree 

method and K-means by used trees to develop weights to be used in K-means.  “Random 

Forest” classification has been developed to address some shortcomings of decision trees. A 

Random Forest is a group of decision trees where each tree is built via different test data. 

When it is time to categorize all the trees are used and an average taken. For more information 

see (Prinzie & Van den Poel, 2008).  

3.2 Parallel algorithms for Non-hierarchal methods 

There has been work on parallel algorithms for some of these methods. Ranka and Sahni 

(1991) have described a parallel algorithm for K-means on a hypercube. Other parallel 

algorithms for K-means can be found in (Ahmed, 2014; Dhillon & Modha, 2002; Forman & 

Zhang, 2000; Judd, McKinley, & Jain, 1998; Kantabutra & Couch, 2000; Li & Fang, 1989; 

Mathew & Vijayakumar, 2014; Pakhira, 2009; Tsai & Horng, 1999; Y. Zhang, Xiong, Mao, 

& Ou, 2006; Y.-P. Zhang, Sun, Zhang, & Zhang, 2004; Zhao, Ma, & He, 2009).  

  

The algorithms for these methods are intrinsically more efficient than the algorithms for 

hierarchal clustering. That is because these methods do not build a hierarchal tree of 

categories. Instead they pre-suppose a set of categories and then try to fit the input items into 

those categories.  

Some of these methods assume categorical data such as gender and age and some may use 

numerical data but they all assume a set number of categories. 

On the other hand, there are many applications where the clusters differ from each other just 

as a matter of degree. Take protein structure categorization as an example. We are given n 

protein chains of exactly the same sequence but they each are folded (their structure or 

conformation) in a slightly different shape. The chemist or biologist wants to have these 

proteins structures categorized such that those of a similar structure will be in the same 

category. It is apparent that a hierarchy of clusters would be useful since there is no way to 

decide on a pre-set number of clusters. When clustering is used it is typically with K-means 

due to the cost of hierarchal clustering but it, unfortunately, does not give the best solutions. 

 

3.3 Parallel Algorithms for Hierarchal Methods 

There has been research for parallel hierarchal clustering. Single-Linkage parallelization was 

fitted to a hypercube (PRAM) (Olson, 1995). PBIRCH was developed for the BIRCH 

algorithm (Garg, Mangla, Gupta, & Bhatnagar, 2006; T. Zhang, Ramakrishnan, & Livny, 

1997).  

Naïve hierarchal clustering, such as the algorithm parallelized in this paper, was presented for 

an  SIMD machine by Ranka and Sahni (Ranka & Sahni, 1991); they focused on a shuffle-
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exchange network. Li (1990) also describes one for SIMD machines. Parallel algorithms for 

naïve hierarchal clustering either were for specific architectures or for single-link clustering. 

 

There are a number of thorough surveys of clustering algorithms both serial  (Baser & Saini, 

2013; Berkhin & others, 2006; Murtagh, 1983; Xu & Wunsch, 2005) and parallel (Kim, 2009; 

Olson, 1995).  

As mentioned in the last section, in this paper we focus specifically on parallelizing the 

generic Lance-Williams clustering algorithm. 

 

4 Lance–William Algorithm 

 

We parallelize the generic Lance William algorithm. This algorithm is able to computer a 

hierarchal closing dendrogram for many hierarchal clustering schemes. 

The Lance-William algorithm is iterative. It starts with n clusters and in every iteration 

combines two clusters together so that after the iteration there are n-1 clusters. The basic 

algorithm is: 

 

Lance –William Algorithm 

For k= 1 to n 

1. From the distance matrix obtain the minimum distance and set aside the (i,j): 

O(n
2
) time  

2. Combine item i and item j into one item thus reducing the number of clusters 

by 1. 

3. Re-calculate new distances between pre-existing clusters and the new 

combined cluster: O(n) time.  

Use the correct update formula depending upon which method is used; 

𝑫𝒌,𝒊+𝒋 = 𝜶𝒊𝑫𝒌,𝒊 + 𝜶𝒋𝑫𝒌,𝒋 + 𝜷𝑫𝒊,𝒋 + 𝜸|𝑫𝒌,𝒊 − 𝑫𝒌,𝒋| where α, β and γ depend on 

the specific method. see Table 1, Lavrenko (2014). 

4. Output the current tree level showing the (n-k) clusters.  

 

 

 

Formula used in step 3: 𝑫𝒌,𝒊+𝒋 = 𝜶𝒊𝑫𝒌,𝒊 + 𝜶𝒋𝑫𝒌,𝒋 + 𝜷𝑫𝒊,𝒋 + 𝜸|𝑫𝒌,𝒊 − 𝑫𝒌,𝒋| 

Method 𝜶𝒊 𝜶𝒋 𝜷 𝜸 

Single Linkage 0.5 0.5 0 -0.5 

Complete Linkage 0.5 0.5 0 0.5 
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Group Average 𝑛𝑖

𝑛𝑖 + 𝑛𝑗
 

𝑛𝑗

𝑛𝑖 + 𝑛𝑗
 

0 0 

Weighted Average 0.5 0.5 0 0 

Centroid 𝑛𝑖

𝑛𝑖 + 𝑛𝑗
 

𝑛𝑗

𝑛𝑖 + 𝑛𝑗
 

−𝑛𝑖 ∗ 𝑛𝑗

(𝑛𝑖 + 𝑛𝑗)2
 

0 

Ward 𝑛𝑖+𝑛𝑘

(𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘)
 

𝑛𝑗+𝑛𝑘

(𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘)
 

−𝑛𝑘

(𝑛𝑖 + 𝑛𝑗 + 𝑛𝑘)
 

0 

 

Table 1: Formulas used in the Lance Williams algorithm for various update methods 

 

 

5 Parallel Lance Williams 

5.1 Network 

Implementation of the algorithm distributed hierarchical clustering – was compiled and run on 

Andy (College of Staten Island’s High Performance Computing cluster). Andy has 744 cores, 

Nehalem 2.93 GHz chip, 3 Gb per core (“Home | CUNY High Performance Computing 

Center,” n.d.)  

 

Parallelized RMSD and distributed hierarchical clustering algorithms were implemented using 

C and MPI (Pacheco, 1997). 

RAM is also distributed which makes 
𝑛2−𝑛

2
  (upper triangle of n by n matrix) storage feasible 

since the table is divided up amongst the workstations. 

 

5.2 Methodology 

We described the general Lance William algorithm above. 

 

To parallelize, we divided up the matrix amongst p processors. Figure 2 shows how this is 

done.  Note that a distance matrix only needs the upper (or lower) diagonal part filled (index 

i,j will have the same value as index j,i). The number of non-blank cells is divided by p; in 

this case 28/7 = 4 items per processor. Matrix items are assigned to processors on a row by 

row basis as in the figure. 

 

https://arxiv.org/ftp/arxiv/papers/1709/1709.06816.pdf


arXiv: 1709.06816 (2017)   https://arxiv.org/ftp/arxiv/papers/1709/1709.06816.pdf   

 

7 

 

 

Figure 2. Method of dividing the n by n matrix amongst p processors.  

In this example n=8 and p=7 and the items are molecules.  

 

5.3 Parallel Lance Williams Algorithm 

Each processor 𝑝𝑚 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑚 ≤ 𝑝, is sent their portion of the matrix: 
(

𝑛2−𝑛

2
)

𝑝
 items.  As 

the data files were read in from disk they were sent to the processors. The processors are also 

sent the (i,j) global matrix indices for their data portion. This is especially important for step 

6a below. 

 

Divide up matrix amongst the processors. 

For k= 1 to n  

1. All processors 𝑝𝑚 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑚 ≤ 𝑝, simultaneously calculate their local 

minimum distance from the cells of the distance matrix assigned to them  

2. Each pm broadcasts their local minimum  

3. Each pm now has all p sets (lminm, pm) where lminm is a local minimum and pm  is 

the corresponding processor.  

4. Each processor simultaneously calculates the global minimum (gmin) and the 

“winning” processor – the process that has the global minimum (i,j) in its part of 

the matrix. Note that communication is unnecessary at this step since very 

processor has enough information to calculate the global minimum.  

5. The processor that was assigned cell (i,j), which in the example of figure 2 is (2,5), 

broadcasts that items i and j should be combined into one cluster.  

6. Update step: we no longer need columns i and j and rows i and j. The ith column 

and row will be used for the new combined I,j cluster. The jth column and row will 

be marked not to be used again.  

 

Processors that have matrix elements in the ith or jth  columns and rows apply the 

formula:   
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𝑫𝒌,𝒊+𝒋 = 𝜶𝒊𝑫𝒌,𝒊 + 𝜶𝒋𝑫𝒌,𝒋 + 𝜷𝑫𝒊,𝒋 + 𝜸|𝑫𝒌,𝒊 − 𝑫𝒌,𝒋| where α, β and γ depend on the 

specific method. We used  

𝑫𝒌,𝒊+𝒋 =. 𝟓𝑫𝒌,𝒊+. 𝟓𝑫𝒌,𝒋+. 𝟓|𝑫𝒌,𝒊 − 𝑫𝒌,𝒋| for complete linkage clustering. 

a. Processors must communicate with each other to obtain any necessary Dk,i 

from another processor that it needs. Note that the only processors that need 

to participate in this communication are those that have data items 

corresponding to rows i or j of the global matrix.  

Processors that have data items from the jth row or jth column send a list of 

triples (i,j,distance) to all processors that have data items in the ith row or ith 

column.  

b. The sending processors mark the sent matrix elements as erased not to be used 

again. The processors that receive the communication apply the formula and 

fill their previously used ith row and column with the updated combined 

cluster information.  Thus the number of clusters has been reduced by 1.   

5.4 Complexity Analysis 

The naïve Lance Williams algorithm is O(n
3
) There is an outer loop that iterated n time where 

n is the number of items . For each of those the upper diagonal matrix is search a maximum of 

(
𝑛2−𝑛

2
) times. It is a maximum because after each iteration the size of the matrix is reduced by 

one row and one column as clusters are combined.  

In our parallel version all work is divided evenly amongst the processors. In addition, the 

matrix elements are evenly divided and stored.  

Work per iteration: 
(

𝑚2−𝑚

2
)

𝑝
, 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑚 ≤ 𝑛;   m begins at n and is decremented every 

iteration 

Storage requirement:  
(

𝑛2−𝑛

2
)

𝑝
  per distributed unit. 

Communication:  

 The initial matrix element is sent p separate sends and receives  

 At most p broadcasts per iteration (step 2) and  

 At most p sends and receives per iteration (step 6a) Note that a subset of processors 

are involved in this communication.  

Thus we have: 

Computation:   (
(

𝑚2−𝑚

2
)

𝑝
) 𝑛   𝑤ℎ𝑖𝑐ℎ 𝑖𝑠  𝑶 (𝒏𝟑

𝒑⁄ ) 

Communication: 𝑝 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦, max 𝑜𝑓 2𝑝 ∗ 𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠   
                          𝑶(𝒑) 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑤ℎ𝑒𝑟𝑒 1 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎 𝑠𝑒𝑛𝑑, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑝𝑎𝑖𝑟 
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Storage:  
(

𝑛2−𝑛

2
)

𝑝
 𝑚𝑎𝑡𝑟𝑖𝑥 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑶 (𝒏𝟐

𝒑⁄ )   

6 Experimental Results 

Figure 2 shows the results of the algorithm as applied to many items. The algorithm was 

tested many times with varying numbers of items, n, to be clustered. The average of n was 

1968.  

For each n we ran the program with varying numbers of processors. As we can see from 

figure 2, speedup is initially linear  until about 5 processors. From that point until p=15 the 

average running time decreased. From  p=15 and on the figure show the speed converging. 

We see that in this case that the optimal number of processors is about p=15. After that, the 

communication costs amongst processors seem to outweigh any computational gains.  

The specific optimum number of processors will grow as the number of items to be clustered 

grows. The algorithm is scaleable as the problem grows. 

Especially noteworthy is that our algorithm cuts down on storage requirements which is a 

bottleneck for large clustering problems. Use of our algorithm on distributed networks with 

separate memory spaces seems promising and should make use of hierarchal clustering 

possible on any distributed network of workstations. 

 

 

Figure 2. Running time is shown as function of processor count. The algorithm was run many 

times and the average number of items is approximately 1968 
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